Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes.
نویسندگان
چکیده
Expression of specific transmembrane receptors by cells frequently represents an important signature of diseases, but this dynamic event can hardly be monitored directly with live cells due to the limitation of current biochemical techniques. Here we develop a pyrenyl glycoanthraquinone construct that can be firmly immobilized on a graphene-spotted screen printed electrode via strong π-interactions. The inherent current signal produced by the surface-confined glycoquinone can be used to detect selective sugar-protein recognitions with simple electrochemical techniques and portable facilities. Importantly, we demonstrate that the level of pathogenic receptors expressed by different types of live cells can be tracked with the electrode system in a label-free manner, providing a useful tool for the on-demand disease diagnosis as well as basic biochemical studies.
منابع مشابه
Dynamic tracking of pathogenic receptor expression of live cells using pyrenyl glycoanthraquinone-decorated graphene electrodes† †Electronic supplementary information (ESI) available: Experimental section, additional figures and original spectra copy of new compounds. See DOI: 10.1039/c4sc03614j Click here for additional data file.
Expression of specific transmembrane receptors by cells frequently represents an important signature of diseases, but this dynamic event can hardly be monitored directly with live cells due to the limitation of current biochemical techniques. Here we develop a pyrenyl glycoanthraquinone construct that can be firmly immobilized on a graphene-spotted screen printed electrode via strong p-interact...
متن کاملOne –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells
We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...
متن کاملAtmospheric-Pressure Plasma Jet Processed Pt-Decorated Reduced Graphene Oxides for Counter-Electrodes of Dye-Sensitized Solar Cells
Ultrafast atmospheric-pressure plasma jet (APPJ) processed Pt-decorated reduced graphene oxides (rGOs) were used as counter-electrodes in dye-sensitized solar cells (DSSCs). Pastes containing rGO, ethyl cellulose, terpineol, and chloroplatinic acid were screen-printed and sintered by nitrogen dc-pulse APPJs. Pt nanodots were uniformly distributed on the rGO flakes. When using Pt-decorated rGOs ...
متن کاملFluorescent Contrast agent Based on Graphene Quantum Dots Decorated Mesoporous Silica Nanoparticles for Detecting and Sorting Cancer Cells
Background and Objectives: The inability of classic fluorescence-activated cell sorting to single cancer cell sorting is one of the most significant drawbacks of this method. The sorting of cancer cells in microdroplets significantly influences our ability to analyze cancer cell proteins. Material and Methods: We adapted a developed microfluidic device as a 3D in vitro model to sorted MCF-7 c...
متن کاملEffect of Graphene Oxide Decorated With Synthesized Nano-CeO2 on Barrier Properties of Epoxy Anticorrosion Coatings
In this paper, graphene oxide decorated with cerium oxide (CeO2) nanoparticles was prepared and used as anticorrosive pigments in epoxy nanocomposite coatings. The synthesized nanoparticle was characterized by FTIR, XRD, SEM, and EDX analyses. Graphene oxide decorated with CeO2 nanoparticles was dispersed in epoxy resin by sonication. The optimum nanoparticle content of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 6 3 شماره
صفحات -
تاریخ انتشار 2015